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Abstract

Results are reported from a search for supersymmetric particles in proton-proton col-
lisions in the final state with a single, high transverse momentum lepton; multiple
jets, including at least one b-tagged jet; and large missing transverse momentum.
The data sample corresponds to an integrated luminosity of 2.3 fb−1 at

√
s = 13 TeV,

recorded by the CMS experiment at the LHC. The search focuses on processes leading
to high jet multiplicities, such as gluino pair production with g̃→ tt χ̃0

1. The quantity
MJ , defined as the sum of the masses of the large-radius jets in the event, is used in
conjunction with other kinematic variables to provide discrimination between signal
and background and as a key part of the background estimation method. The ob-
served event yields in the signal regions in data are consistent with those expected
for standard model backgrounds, estimated from control regions in data. Exclusion
limits are obtained for a simplified model corresponding to gluino pair production
with three-body decays into top quarks and neutralinos. Gluinos with a mass be-
low 1600 GeV are excluded at a 95% confidence level for scenarios with low χ̃0

1 mass,
and neutralinos with a mass below 800 GeV are excluded for a gluino mass of about
1300 GeV. For models with two-body gluino decays producing on-shell top squarks,
the excluded region is only weakly sensitive to the top squark mass.
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1 Introduction
Supersymmetry (SUSY) [1–8] is an extension of the standard model (SM) of particle physics
that is motivated by several considerations, including the gauge hierarchy problem [9–14], the
existence of astrophysical dark matter [15–17], and the possibility of gauge coupling constant
unification at high energy [18–22]. In SUSY models, each SM particle has a corresponding
supersymmetric partner (or partners) whose spin differs by one-half, such that fermions are
mapped to bosons and vice-versa. Gauge quantum numbers are preserved by this symmetry,
and to preserve degrees of freedom, a SM spin-1/2 Dirac particle, such as the top quark, has two
spin-0 partners, the top squarks. The SUSY partner of the (spin-1) gluon, the massless mediator
of the strong interactions in the SM, is the spin-1/2 gluino. In R-parity-conserving models [23,
24], SUSY particles are produced in pairs, and the lightest supersymmetric particle (LSP) is
stable. If the LSP is the lightest neutralino (χ̃0

1), an electrically neutral mixture of the SUSY
partners of the neutral electroweak gauge and Higgs bosons, then it has weak interactions only
and can in principle account for some or all of the dark matter.

The gauge hierarchy problem has become more urgent with the discovery of the Higgs bo-
son [25–30]. Although the SM is conceptually complete, the Higgs boson mass, together with
the electroweak scale, is unstable against enormous corrections from loop processes, which pull
the Higgs mass to the cutoff scale of the theory, for example, the Planck scale. This outcome can
be avoided within the framework of the SM only with extreme fine tuning of the bare Higgs
mass parameter, a situation that is regarded as unnatural, although not excluded. This prob-
lem suggests that additional symmetries and associated degrees of freedom may be present
that ameliorate these effects. So-called natural SUSY models [31–34], in which sufficiently light
SUSY partners are present, are a major focus of current new physics searches at the CERN
LHC. In natural models, several of the SUSY partners are constrained to be light [33]: both top
squarks, t̃L and t̃R, which have the same electroweak couplings as the left- (L) and right- (R)
handed top quarks, respectively; the bottom squark with L-handed couplings (b̃L); the gluino
(g̃); and the Higgsinos (h̃). While the gluino mass is not constrained by naturalness consid-
erations as strongly as that of the lighter top squark mass eigenstate, t̃1, the cross section for
gluino pair production is substantially larger than that for top squark pair production, for a
given mass. As a consequence, the two types of searches can have comparable sensitivity to
these models. Both types of searches are currently of intense interest, and CMS and ATLAS
data taken at

√
s = 8 GeV have provided significant constraints [35] on natural SUSY scenarios.

This study uses the first LHC proton-proton collision data taken by the CMS experiment at√
s = 13 GeV to search for gluino pair production. Searches targeting this process in the single-

lepton final state using 8 TeV data have been performed by both ATLAS [36] and CMS [37]. For
mg̃ = 1.5 TeV, somewhat above the highest gluino masses excluded at

√
s = 8 TeV, the cross sec-

tion for gluino pair production increases dramatically with center-of-mass energy, from about
0.4 fb at

√
s = 8 TeV to about 14 fb at

√
s = 13 TeV [38]. In contrast, the cross section for

the dominant background, tt production, increases much more slowly, from about 248 pb at√
s = 8 TeV to 816 pb at

√
s = 13 TeV [39]. As a consequence, the sensitivity of this search

can be significantly extended with respect to searches performed at
√

s = 8 GeV, even though
the 13 TeV data sample has an integrated luminosity of only 2.3 fb−1, roughly one-tenth of that
acquired at 8 TeV.

The search targets gluino pair production with g̃ → ttχ̃0
1, which arises from g̃ → t̃1t, where

the top squark is produced either on or off mass shell. The off-mass-shell scenario is shown
in Fig. 1 (left) and is often designated T1tttt [40] in simplified model scenarios [41–43]. Results
are also obtained for scenarios with on-shell top squark masses. This scenario is shown in
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Figure 1: Gluino pair production and decay for the simplified models T1tttt (left) and T5tttt
(right). In T1tttt, the gluino undergoes three-body decay g̃ → ttχ̃0

1 via a virtual intermediate
top squark. In T5tttt, the gluino decays via the sequential two-body process g̃ → t̃1t, t̃1 → tχ̃0

1.
Because gluinos are Majorana particles, each one can decay to t̃1t and to the charge conjugate
final state t̃1t.

Fig. 1 (right) and will be denoted by T5tttt. (For this scenario, the small contribution from the
direct production of top squark pairs is also taken into account.) Regardless of whether the
top squark is produced on or off mass shell, the final state is characterized by a large number
of jets, four of which are b jets from top quark decays. Depending on the decay modes of
the accompanying W bosons, a range of lepton multiplicities is possible; we focus here on
the single-lepton final state, where the lepton is either an electron or a muon. Because the
two neutralinos (χ̃0

1) are undetected, their production in SUSY events typically gives rise to
a large amount of missing (unobserved) momentum, whose value in the direction transverse
to the beam axis can be inferred from the momenta of the observed particles. The missing
transverse momentum, ~pmiss

T , is a key element of searches for R-parity-conserving SUSY, and
its magnitude is denoted by Emiss

T .

A challenge in performing searches for SUSY particles is obtaining sufficient sensitivity to the
signal, while at the same time understanding the background contribution from SM processes
in a robust manner. This analysis is designed such that the background in the signal regions
arises largely from a single process, dilepton tt production, in which both W bosons from
t → bW+ decay leptonically, but only one lepton satisfies the criteria associated with iden-
tification, the minimum transverse momentum (pT) requirement, and isolation from other en-
ergy in the event. The search signature is characterized not only by the presence of high-pT
jets and b-tagged jets, an isolated high-pT lepton, and large Emiss

T , but also by additional kine-
matic variables. Apart from resolution effects, the transverse mass of the lepton + ~pmiss

T system,
mT, is bounded above by mW for events with a single leptonically decaying W, and this vari-
able is very effective in suppressing the otherwise dominant single-lepton tt background. The
quantity MJ , the scalar sum of the masses of large-radius jets, is used both to characterize the
mass and energy scale of the event, providing discrimination between signal and background,
and as a key part of the background estimation. A property of MJ exploited in this analysis
is that, for the dominant background, this variable is nearly uncorrelated with mT. Because of
the absence of correlation between MJ and mT, the background shape at high mT, including the
signal region, can be measured to a very good approximation using a low-mT control sample.
The quantity MJ was first discussed in phenomenological studies, for example, in Refs. [44–46].
Similar variables have been used by ATLAS for SUSY searches in all-hadronic final states using
8 TeV data [47, 48]. We have presented studies of basic MJ properties and performance using
early 13 TeV data [49].
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This paper is organized as follows. Section 2 gives a brief overview of the CMS detector. Sec-
tion 3 discusses the simulated event samples used in the analysis. The event reconstruction
is discussed in Section 4, while Section 5 describes the trigger and event selection. Section 6
presents the methodology used to predict the SM background from the event yields in control
regions in data. The associated systematic uncertainties are also discussed. The event yields
observed in the signal regions are presented in Section 7. These yields are compared with back-
ground predictions and used to obtain exclusion regions for the gluino pair production models
shown in Fig. 1. Finally, Section 8 presents a summary of the methodology and the results.

2 Detector
The central feature of the CMS detector is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are the tracking and
calorimeter systems. The tracking system, composed of silicon-pixel and silicon-strip detec-
tors, measures charged particle trajectories within the pseudorapidity range |η| < 2.5, where
η ≡ − ln[tan(θ/2)] and θ is the polar angle of the trajectory of the particle with respect to the
counterclockwise proton beam direction. A lead tungstate crystal electromagnetic calorimeter
(ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel
and two endcap sections, provide energy measurements up to |η| = 3. Forward calorime-
ters extend the pseudorapidity coverage provided by the barrel and endcap detectors up to
|η| = 5. Muons are identified and measured within the range |η| < 2.4 by gas-ionization de-
tectors embedded in the steel magnetic flux-return yoke outside the solenoid. The detector is
nearly hermetic, permitting the accurate measurement of ~pmiss

T . A more detailed description
of the CMS detector, together with a definition of the coordinate system used and the relevant
kinematic variables, is given in Ref. [50].

3 Simulated event samples
The analysis makes use of several simulated event samples for modeling the SM background
and signal processes. While the background estimation in the analysis is performed largely
from control samples in the data, simulated event samples provide correction factors, typically
near unity. The equivalent integrated luminosity of the simulated event samples is at least
six times that of the data, and at least 100 times that of the data in the case of tt and signal
processes.

The production of tt+jets, W+jets, Z+jets, and QCD multijet events is simulated with the Monte
Carlo (MC) generator MADGRAPH5 AMC@NLO 2.2.2 [51] in leading-order (LO) mode. Single
top quark events are modeled at next-to-leading order (NLO) with MADGRAPH5 AMC@NLO
for the s-channel and POWHEG v2 [52, 53] for the t-channel and W-associated production. Addi-
tional small backgrounds, such as tt production in association with bosons, diboson processes,
and tt̄tt̄ are similarly produced at NLO with either MADGRAPH5 AMC@NLO or POWHEG. All
events are generated using the NNPDF 3.0 [54] set of parton distribution functions (PDF). Par-
ton showering and fragmentation are performed with the PYTHIA 8.205 [55] generator with the
underlying event model based on the CUETP8M1 tune detailed in Ref. [56]. The detector sim-
ulation is performed with GEANT4 [57]. The cross sections used to scale simulated event yields
are based on the highest order calculation available. For tt, in addition to using the next-to-
next-to-leading order + next-to-next-to-leading logarithmic cross section calculation [39], the
modeling of the event kinematics is improved by reweighting the top quark pT spectrum to
match the data [58], keeping the overall normalization fixed.
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Signal events for the T1tttt and T5tttt simplified models are generated in a manner similar to
that for the SM backgrounds, with the MADGRAPH5 AMC@NLO 2.2.2 generator in LO mode
using the NNPDF 3.0 PDF set and followed with PYTHIA 8.205 for showering and fragmen-
tation. The detector simulation is performed with the CMS fast simulation package [59] with
scale factors applied to account for any differences with respect to the full simulation used for
backgrounds. Event samples are generated for a representative set of model scenarios by scan-
ning over the relevant mass ranges for the g̃ and χ̃0

1, and the yields are normalized to the NLO
+ next-to-leading-logarithmic cross section [38, 60–63].

Throughout this paper, two T1tttt benchmark models are used to illustrate typical signal behav-
ior. The T1tttt(1500,100) model, with masses mg̃ = 1500 GeV and mχ̃0

1
= 100 GeV, corresponds

to a scenario with a large mass splitting (referred to as non-compressed, or NC) between the
gluino and the neutralino. This mass combination probes the sensitivity of the analysis to a low
cross section (14 fb) process that has a hard Emiss

T spectrum, which results in a relatively high
signal efficiency. The T1tttt(1200,800) model, with masses mg̃ = 1200 GeV and mχ̃0

1
= 800 GeV,

corresponds to a scenario with a small mass splitting (referred to as compressed, or C) between
the gluino and the neutralino. Here the cross section is much higher (86 fb) because the gluino
mass is lower than for the T1tttt(1500,100) model, but the sensitivity suffers from a low signal
efficiency due to the soft Emiss

T spectrum.

Finally, to model the presence of additional proton-proton collisions from the same or adjacent
beam crossing as the primary hard-scattering process (“pileup” interactions), the simulated
events are overlaid with multiple minimum bias events, which are also generated with the
PYTHIA 8.205 generator with the underlying event model based on the CUETP8M1 tune.

4 Event reconstruction
The reconstruction of physics objects in an event proceeds from the candidate particles iden-
tified by the particle-flow (PF) algorithm [64, 65], which uses information from the tracker,
calorimeters, and muon systems to identify the candidates as charged or neutral hadrons, pho-
tons, electrons, or muons. Charged particle tracks are required to originate from the event
primary vertex (PV), defined as the reconstructed vertex, located within 24 cm (2 cm) of the
center of the detector in the direction along (perpendicular to) the beam axis, that has the high-
est value of p2

T summed over the associated charged particle tracks.

The charged PF candidates associated with the PV and the neutral PF candidates are clustered
into jets using the anti-kT algorithm [66] with distance parameter R = 0.4, as implemented
in the FASTJET package [67]. The estimated pileup contribution to the jet pT from neutral PF
candidates is removed with a correction based on the area of the jet and the average energy
density of the event [68]. The jet energy is calibrated using pT- and η-dependent corrections;
the resulting calibrated jet is required to satisfy pT > 30 GeV and |η| ≤ 2.4. Each jet must also
meet loose identification requirements [69] to suppress, for example, calorimeter noise. Finally,
jets that have PF constituents matched to an isolated lepton, as defined below, are removed
from the jet collection.

A subset of the jets are “tagged” as originating from b quarks using the combined secondary
vertex (CSV) algorithm [70, 71]. For the CSV medium working point chosen for this analysis,
the signal efficiency for b jets in the range pT = 30 to 50 GeV is 60–67% (51–57%) in the barrel
(endcap), increasing with pT. Above pT ≈ 150 GeV the b tagging efficiency decreases. The
probability to misidentify jets arising from c quarks is 13–15% (11–13%) in the barrel (endcap),
while the misidentification probability for light-flavor quarks or gluons is 1–2%.
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Throughout this paper, quantities related to the number of jets (Njets) or to the number of b-
tagged jets (Nb) are based only on small-R jets, not on the large-R jets discussed below.

Electrons are reconstructed by associating a charged particle track with an ECAL superclus-
ter [72]. The resulting candidate electrons are required to have pT > 20 GeV and |η| < 2.5, and
to satisfy identification criteria designed to remove light-parton jets, photon conversions, and
electrons from heavy flavor hadron decays. Muons are reconstructed by associating tracks in
the muon system with those found in the silicon tracker [73]. Muon candidates are required to
satisfy pT > 20 GeV and |η| < 2.4.

To preferentially select leptons that originate in the decay of W bosons, leptons are required to
be isolated from other PF candidates. Isolation is quantified using an optimized version of the
“mini-isolation” variable originally suggested in Ref. [74], in which the transverse energy of
the particles within a cone in η-φ space surrounding the lepton momentum vector is computed
using a cone size that scales as 1/p`T, where p`T is the transverse momentum of the lepton. In
this analysis, mini-isolation, Irel

mini, is defined as the transverse energy of particles in a cone of
radius Rmini-iso around the lepton, divided by p`T. The transverse energy is computed as the
scalar sum of the pT values of the charged hadrons from the PV, neutral hadrons, and photons.
The neutral hadron and photon contributions to this sum are corrected for pileup. The cone
radius Rmini-iso varies with the p`T according to

Rmini-iso =





0.2, p`T ≤ 50 GeV
(10 GeV)/p`T, p`T ∈ (50 GeV, 200 GeV)

0.05, p`T ≥ 200 GeV.
(1)

The 1/p`T dependence is motivated by considering a two-body decay of a massive parent par-
ticle with mass M and large pT, for which the angular separation of the daughter particles is
roughly ∆Rdaughters ≈ 2M/pT. The pT-dependent cone size reduces the rate of accidental over-
laps between the lepton and jets in high-multiplicity or highly Lorentz-boosted events, partic-
ularly overlaps between b jets and leptons originating from a boosted top quark. The cone re-
mains large enough to contain b-hadron decay products for non-prompt leptons across a range
of p`T values. Muons (electrons) must satisfy Irel

mini < 0.2 (0.1). The combined efficiency for the
electron reconstruction and isolation requirements is about 50% at a p`T of 20 GeV, increasing to
65% at 50 GeV and reaching a plateau of 80% above 200 GeV. The combined reconstruction and
isolation efficiencies for muons are about 70% at a p`T of 20 GeV, increasing to 80% at 50 GeV
and reaching a plateau of 95% at 200 GeV.

We cluster R = 0.4 (“small-R”) jets and the isolated leptons into R = 1.2 (“large-R”) jets us-
ing the anti-kT algorithm. The mass of the large-R jets retains angular information about the
clustered objects, as well as their pT and multiplicity. Clustering small-R jets instead of PF can-
didates incorporates the jet pileup corrections, thereby reducing the dependence of the mass
on pileup. The variable MJ is defined as the sum of all large-R jet masses:

MJ= ∑
Ji=large-R jets

m(Ji). (2)

The technique of clustering small-R jets into large-R jets has been used previously by ATLAS
in, for example, Ref. [75]. Leptons are included in the large-R jets to include the full kinematics
of the event, and the choice R = 1.2 optimizes the background rejection power of MJ while
retaining signal efficiency. Larger distance parameters were found to offer no significant addi-
tional discriminating power, while smaller parameters decrease the background rejection up to
a factor of two for models with small mass splittings between the gluino and neutralino.
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Figure 2: Distributions of MJ , normalized to the same area, from simulated event samples with
a small ISR contribution (left) and a significant ISR contribution (right). These components are
defined according to whether the pT of the tt system (or, in the case of signal events, that of the
g̃g̃ system) is < 10 GeV or > 100 GeV, respectively. The T1tttt(NC) signal model (dashed red
line), is described in Section 3; the first model parameter in parentheses corresponds to mg̃ and
the second to mχ̃0

1
, both in units of GeV. The events satisfy the requirements Emiss

T > 200 GeV
and HT > 500 GeV and have at least one reconstructed lepton.

For tt events with a small contribution from initial-state radiation (ISR), the MJ distribution has
an approximate cutoff at twice the mass of the top quark, as shown in Fig. 2 (left). In contrast,
the MJ distribution for signal events extends to larger values. The presence of a significant
amount of ISR generates a high-MJ tail in the tt background, as shown in Fig. 2 (right).

The missing transverse energy, Emiss
T , is given by the magnitude of ~pmiss

T , the negative vector
sum of the transverse momenta of all PF candidates [64, 65]. Correspondence to the true un-
detectable energy in the event is improved by replacing the contribution of the PF candidates
associated with a jet by the calibrated four-momentum of that jet. To separate backgrounds
characterized by the presence of a single W boson decaying leptonically but without any other
source of missing energy, the lepton and the Emiss

T are combined to obtain the transverse mass,
mT, defined as:

mT =
√

2p`TEmiss
T [1− cos(∆φ`,~p miss

T
)], (3)

where ∆φ`,~p miss
T

is the difference between the azimuthal angles of the lepton momentum vector
and the missing momentum vector, ~pmiss

T . Finally, we define the quantity HT as the scalar sum
of the transverse momenta of all the small-R jets passing the selection.

5 Trigger and event selection
The data sample used in this analysis was obtained with triggers that require HT > 350 GeV
and at least one electron or muon with pT > 15 GeV, where these variables are computed
with online (trigger-level) quantities and typically have somewhat poorer resolution than the
corresponding offline variables. To ensure high trigger efficiency with respect to the offline
definition of lepton isolation described in the previous section (mini-isolation), we designed
these triggers with very loose lepton isolation requirements and fixed the isolation cone size
to R = 0.2. For events passing the offline selection, the total trigger efficiency, measured in
data control samples triggered independently, is found to be about 95% and is independent of
the analysis variables within the uncertainties. This efficiency is applied to the simulation as a
correction.
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Table 1: Event yields obtained from simulated event samples, as the event selection criteria are
applied. The category Other includes Drell-Yan, ttH(→ bb), tttt, WZ, and WW. The yields for
tt events in fully hadronic final states are included in the QCD multijet category. The category
ttV includes ttW, ttZ, and ttγ. The benchmark signal models, T1tttt(NC) and T1tttt(C), are
described in Section 3. The event selection requirements listed above the horizontal line in the
middle of the table are defined as the baseline selection. The background estimates before the
HT requirement are not specified because some of the simulated event samples do not extend
to the low HT region. Given the size of the MC samples described in Section 3, rows with zero
yield have statistical uncertainties of at most 0.16 events, and below 0.05 events in most cases.

L = 2.3 fb−1 Other QCD ttV Single t W+jets tt (1`) tt (2`) SM bkg. T1tttt(NC) T1tttt(C)
No selection — — — — — — — — 31.3 190.0
1`, pT > 20 GeV — — — — — — — — 11.9 68.7
HT > 500 GeV 4131.9 31831.5 721.9 2926.6 31885.1 27628.7 3357.8 102483.4 11.9 44.9
Emiss

T > 200 GeV 310.6 154.7 89.1 457.2 4343.1 2183.6 584.0 8122.3 10.5 21.5
Njets ≥ 6, pT > 30 GeV 27.3 8.0 36.8 82.8 278.7 792.3 171.4 1397.4 9.6 20.4
Nb ≥ 1 9.4 2.7 29.6 63.9 66.3 632.2 137.4 941.4 9.1 19.1
MJ > 250 GeV 6.7 2.6 22.6 43.8 46.1 455.2 87.2 664.2 9.0 16.5
mT > 140 GeV 0.7 1.4 3.0 3.5 1.2 5.5 32.5 47.9 7.0 9.2
MJ > 400 GeV 0.4 0.8 1.1 1.4 0.6 2.8 9.7 16.7 6.4 4.5
Nb ≥ 2 0.16 0.04 0.55 0.68 0.00 1.29 4.52 7.24 4.87 3.47
Emiss

T > 400 GeV 0.02 0.00 0.12 0.31 0.00 0.07 0.72 1.24 3.60 1.48
Njets ≥ 9, pT > 30 GeV 0.01 0.00 0.03 0.00 0.00 0.01 0.11 0.16 1.64 1.00

The offline event selection is summarized in Table 1, which lists the event yields expected
from simulation for both SM background processes and for the two benchmark T1tttt signal
models. We select events with exactly one isolated charged lepton (an electron or a muon),
HT > 500 GeV, Emiss

T > 200 GeV, at least six jets, at least one of which is b-tagged. After this
set of requirements, referred in the following as the baseline selection, more than 80% of the
remaining SM background arises from tt production. The contributions from events with a
single top quark or a W boson in association with jets are each about 6–7%. The background
from QCD multijet events after the baseline selection is negligible due to the combination of
leptonic, Emiss

T , and Njets requirements.

After the baseline selection requirements are applied, events are binned in several other kine-
matic variables, both to increase the signal sensitivity and to define control regions, as described
in Section 6.1. To illustrate the effect of additional requirements, Table 1 lists the expected yields
for examples of event selection requirements on MJ , mT, Njets, and Nb. The events satisfying
the baseline selection are divided in the MJ-mT plane into a signal region, defined by the addi-
tional requirements MJ > 400 GeV and mT > 140 GeV, and three control samples, bounded by
MJ > 250 GeV, that are used in the background estimation. Approximately 37% of signal T1tttt
events are selected with the single-lepton requirement only. In non-compressed spectrum mod-
els, for which mg̃ is significantly larger than mχ̃0

1
, more than half of the events passing the lepton

requirement lie in the signal region. For compressed spectrum models, where mχ̃0
1
≈ mg̃ − 2mt,

the MJ , HT, and Emiss
T spectra become much softer and, as a result, only 5–10% of the single-

lepton signal events are selected.

As shown in Fig. 3, backgrounds with a single W boson decaying leptonically are strongly
suppressed after the mT > 140 GeV requirement, so the total SM background in the signal
region is dominated by dilepton tt events. Approximately half of this dilepton background
involves an electron or muon and a hadronically decaying τ lepton.
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are taken into account in one of the global fits, as discussed in the text.
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6 Background estimation
6.1 Method

The prediction of the background yields in each of the signal bins takes advantage of the fact
that the MJ and mT distributions of events with a significant amount of ISR are largely uncor-
related. The correlation coefficients for the single-lepton and dilepton tt events in the MJ-mT
plane after the baseline selection (as shown in Fig. 4) are small, in the range 0.03 to 0.05. The
absence of a substantial correlation allows us to measure the MJ distribution of the background
at low mT with good statistical precision, and extrapolate it to high mT. The underlying expla-
nation for this behavior is not immediately obvious, given that low-mT events originate mainly
from tt events where only one of the top quarks decays leptonically (1` tt), while the high-mT
regions are dominated by dilepton tt events (2` tt). In particular, as shown in Fig. 2 (left), in the
absence of significant ISR, the dileptonic tt events have a softer MJ spectrum than single-lepton
tt events, simply because the reconstructed mass of a leptonically decaying top quark does not
include the undetected neutrino.

In events with substantial ISR, however, the contributions to MJ from the accidental overlap of
jets can dominate the contributions due to the intrinsic mass of the top quarks. This effect is
illustrated in Fig. 5, which compares the Njets and MJ distributions of single-lepton and dilepton
tt events at high and low mT after the baseline selection is applied. Since we require at least
6 jets, single-lepton tt events must have at least 2 ISR jets and dilepton tt events must have at
least 4. In this regime, the probability of additional ISR jets is similar for events with a given
number of partons of similar momenta, and, as a result, the number of objects contributing
to MJ (jets plus the reconstructed lepton) is comparable in 1` and 2` tt events. When these
ISR jets overlap with the top quark decay products, the masses of the resulting large-R jets are
dominated by the accidental overlap and, thus, the shapes of the MJ distribution of 1` and 2` tt
events become more similar. This is the case for MJ > 250 GeV, where Fig. 5 (right) shows that
the distributions of the 1` and 2` tt backgrounds have nearly the same shape, and the low-mT
to high-mT extrapolation is warranted.

We thus divide the MJ-mT plane into four regions, three control regions (CR) and one signal
region (SR):

• Region R1 (CR): mT ≤ 140 GeV, 250 ≤ MJ ≤ 400 GeV

• Region R2 (CR): mT ≤ 140 GeV, MJ > 400 GeV

• Region R3 (CR): mT > 140 GeV, 250 ≤ MJ ≤ 400 GeV

• Region R4 (SR): mT > 140 GeV, MJ > 400 GeV.

These regions are further subdivided into 10 bins of Emiss
T , Njets, and Nb to increase signal sen-

sitivity:

• Six bins with 200 < Emiss
T ≤ 400 GeV: (6 ≤ Njets ≤ 8, Njets ≥ 9)× (Nb = 1, Nb =2, Nb ≥ 3)

• Four bins with Emiss
T > 400 GeV: (6 ≤ Njets ≤ 8, Njets ≥ 9)× (Nb = 1, Nb ≥ 2),

where the multiplication indicates that the binning is two dimensional in Njets and Nb. Given
that the main background processes have two or fewer b quarks, the total SM contribution to
the Nb ≥ 3 bins is very small and is driven by the b-tag fake rate. Signal events in the T1tttt and
T5tttt models are expected to populate primarily the bins with Nb ≥ 2, while bins with Nb = 1
mainly serve to test the method in a background dominated region.

To obtain an estimate of the background rate in each of the signal bins, a modified version of
an “ABCD” method is used. Here, the symbols A, B, C, and D refer to four regions in a two-
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Figure 5: Comparison of Njets and MJ distributions, normalized to the same area, in simulated
tt events with two true leptons at high mT and one true lepton at low mT, after the baseline
selection is applied. The shapes of these distributions are similar. These two contributions
are the dominant backgrounds in their respective mT regions. The dashed vertical line on the
right-hand plot indicates the MJ > 400 GeV threshold that separates the signal regions from
the control samples. The shaded region corresponding to MJ < 250 GeV is not used in the
background estimation.

dimensional space in the data, where one of the regions is dominated by signal and the other
three by backgrounds. In a standard ABCD method, the background rate in the signal region
is estimated from the yields in three control regions with the expression

µ
bkg
R4 = NR2 NR3/NR1, (4)

where the labels on the regions correspond to those shown in Fig. 4. The background prediction
is unbiased in the limit that the two variables that define the plane (in this case, MJ and mT)
are uncorrelated. The effect of any residual correlation is corrected with factors κ that can be
obtained from simulated event samples:

κ =
NMC,bkg

R4 /NMC,bkg
R3

NMC,bkg
R2 /NMC,bkg

R1

. (5)

When the two ABCD variables are uncorrelated or nearly so, the κ factors are close to unity.
This procedure ignores potential signal contamination in the control regions, which is ac-
counted for by incorporating the constraints in Eqs. 4 and 5 into a fit that includes both signal
and background components, as described in Section 6.2.

In principle, the background in the 10 signal bins could be estimated by applying this procedure
in 10 independent planes. However, this procedure would incur large statistical uncertainties
in some bins due to low numbers of events in R3. This problem is especially important in bins
with a high number of jets, where the MJ spectrum shifts to higher values and the number of
background events expected in R4 can exceed the background in R3.

To alleviate this problem, we exploit the fact that, after the baseline selection, the background
is dominated by just one source (tt events), and the shapes of the Njets distributions are nearly
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Figure 6: The ratio R(mT) of high-mT (R3+R4) to low-mT (R1+R2) event yields for the simulated
SM background, as a function of Njets and Nb. The baseline selection requires Njets ≥ 6. The
uncertainties shown are statistical only.

identical for the single-lepton and dilepton components (due to the large amounts of ISR).
As a result, the mT distribution is approximately independent of Njets and Nb. We study this
behavior with the ratio of the number of events at high to low mT:

R(mT) ≡
N(mT > 140 GeV)

N(mT ≤ 140 GeV)
. (6)

Because, as seen in Fig. 6, the values of R(mT) do not vary substantially across Njets and Nb
bins, the predicted value of R(mT) is not sensitive to the modeling of the distributions of those
quantities. We exploit this result by integrating the yields of the low-MJ regions (R1 and R3)
over the Njets and Nb bins for each Emiss

T bin. This procedure increases the statistical power of
the ABCD method but also introduces a correlation among the predictions (Eq. (4)) for the Njets
and Nb bins associated with a given Emiss

T bin. Figure 7 shows the κ factors for the 10 signal
bins after summing over Njets and Nb in R1 and R3. In all cases, their values are close to unity.

6.2 Implementation

The method outlined in Section 6.1 is implemented with a likelihood function that incorpo-
rates the statistical and systematic uncertainties in κ, accounts for correlations arising from the
common R1 and R3 yields, and corrects for for signal contamination in the control regions.

The SM background contribution for each region is described as follows. We define µ
bkg
Ri as

the estimated (Poisson) mean background in each region Ri, with i = 1, 2, 3, 4. Then, in an
ABCD background calculation, these four rates can be expressed in terms of three floating fit
parameters µ, R(mT), and R(MJ), and the correlation correction factor κ, as

µ
bkg
R1 = µ, µ

bkg
R2 = µ R(MJ),

µ
bkg
R3 = µ R(mT), µ

bkg
R4 = κ µ R(MJ) R(mT). (7)

Here, µ is the background rate fit parameter for R1, R(MJ) is the ratio of the R2 to R1 rates, and
R(mT) is the ratio of the R3 to R1 rates. The quantity κ is given by Eq. (5) after replacing the
yields NMC,bkg

Ri by the background rate fit parameters µ
MC,bkg
Ri .
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Figure 7: Values of the double-ratio κ in each of the 10 signal bins, calculated using the simu-
lated SM background. The κ factors are close to unity, indicating the small correlation between
MJ and mT. The uncertainties shown are statistical only.

Similarly, we define Ndata
Ri as the observed data yield in each region, µ

MC,sig
Ri as the expected

signal rate in each region, and r as the parameter quantifying the signal strength relative to the
expected yield across all analysis regions. We can then write the likelihood function as

L = Ldata
ABCD LMC

κ LMC
sig , (8)

Ldata
ABCD =

4

∏
i=1

Nbins(Ri)

∏
k=1

Poisson(Ndata
Ri,k |µ

bkg
Ri,k + r µ

MC,sig
Ri,k ), (9)

LMC
κ =

4

∏
i=1

Nbins(Ri)

∏
k=1

Poisson(NMC,bkg
Ri,k |µMC,bkg

Ri,k ), (10)

LMC
sig =

4

∏
i=1

Nbins(Ri)

∏
k=1

Poisson(NMC,sig
Ri,k |µMC,sig

Ri,k ). (11)

The indices k run over each of the Emiss
T , Njets, and Nb bins defined in the previous section; these

indices were suppressed in Eq. (7) for simplicity. Given the integration over Njets and Nb at low
MJ , Nbins(R1) = Nbins(R3) = 2, while Nbins(R2) = Nbins(R4) = 10.

In Eq. (8), Ldata
ABCD accounts for the statistical uncertainty in the observed data yield in the four

ABCD regions, and LMC
κ and LMC

sig account for the uncertainty in the computation of the κ

correction factor and signal shape, respectively, due to the finite size of the MC samples.

The systematic uncertainties in κ and the signal efficiency are described in the following sec-
tions. These effects are incorporated in the likelihood function as log-normal constraints with a
nuisance parameter for each uncorrelated source of uncertainty. These terms are not explicitly
shown in the likelihood function above for simplicity.

The likelihood function defined in Eqs. (8)–(11) is employed in two separate types of fits that
provide complementary but compatible background estimates based on an ABCD model. The
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first type of fit, which we call the predictive fit, allows us to more easily establish the agreement
of the background predictions and the observations in the null (i.e., the background-only) hy-
pothesis. We do this by excluding the observations in the signal regions in the likelihood (that
is, by truncating the first product in Eq. (9) at i = 3) and fixing the signal strength r to 0. This
procedure leaves as many unknowns as constraints: three data floating parameters (µ, R(MJ),
and R(mT)) and three observations (Ndata

Ri,k with i = 1, 2, 3) for each ABCD plane. In the likeli-
hood function there are additional floating parameters associated with MC quantities, which
have small uncertainties. As a result, the estimated background rates in regions R1, R2, and R3
converge to the observed values in those bins, and we obtain predictions for the signal regions
that do not depend on the observed Ndata

R4 . The predictive fit thus converges to the standard
ABCD method, and the likelihood machinery becomes just a convenient way to solve the sys-
tem of equations and propagate the various uncertainties.

Additionally, we implement a global fit which, by making use of the observations in the signal
regions, can provide an estimate of the signal strength r, while allowing for signal events to
populate the control regions. This is achieved by including all four observations, Ndata

Ri,k with
i = 1, 2, 3, 4, in the likelihood function. Since there are four observations and three float-
ing background parameters in each ABCD plane, there are enough constraints for the signal
strength also to be determined in the fit.

6.3 Systematic uncertainties

This section describes the systematic uncertainties in the background prediction, which are
incorporated into the analysis as an uncertainty in the κ correction. Because the dominant
background arises from 2` tt events, we use a control sample with two reconstructed leptons
to validate our background estimation procedure and to quantify the associated uncertainty.
The resulting uncertainty is augmented with simulation-based studies of effects that are not
covered by this dilepton test. Table 2 summarizes all of the uncertainties in the background
prediction.

The ability of the ABCD method to predict the 2` tt background is studied using a modified
ABCD plane, in which the high-mT regions, R3 and R4, are replaced with regions D3 and D4,
which have two reconstructed leptons. These regions have low and high MJ , respectively, just
as R3 and R4. The events in D3 and D4 pass the same selection as those in R3 and R4, except for
the following changes: Njets bin boundaries are lowered by one to keep the number of large-R
jet constituents the same as in the single-lepton samples; the mT requirement is not applied;
and events with Nb = 0 are included to increase the size of the event sample, while events with
Nb ≥ 3 are excluded to avoid signal contamination. We perform this test only for low Emiss

T
to further avoid the potentially large signal contribution in the high-Emiss

T region. The low-MJ
regions (R1 and D3) are integrated over Njets, while the high-MJ regions (R2 and D4) are binned
in low and high Njets. The predictive fit is then used to predict the D4 event yields for both Njets
bins. We predict 11.0± 2.3 (1.5± 0.5) events for the low (high) Njets bin, and we observe 12 (2)
events. Given the good agreement between prediction and observation, the statistical precision
of the test is taken as a systematic uncertainty in κ. These uncertainties are 37% and 88% for
the low- and high-Njets regions, respectively.

Since the event composition of regions D3 and D4 is not fully representative of that in R3
and R4, we perform studies on potential additional sources of systematic uncertainty in the
simulation. We find that the main source of 1` tt events in the high-mT region is jet energy
mismeasurement. We study the impact of mismodeling the size of this contribution by smear-
ing the jet energies by an additional 50% with respect to the jet energy resolution measured
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Table 2: Summary of uncertainties in the background predictions. All entries in the table ex-
cept for data sample size correspond to a relative uncertainty on κ. The ranges indicate the
spread of each uncertainty across the signal bins. Uncertainties from a particular source are
treated as fully correlated across bins, while uncertainties from different sources are treated as
uncorrelated.

Source Fractional uncertainty [%]
Data sample size 28–118
Dilepton control sample test 37–88
Simulation sample size 5–17
Jet energy resolution 2–10
Jet energy corrections 1–5
ISR pT 1–5
Top pT 1–4
Non-tt background 2–11

in data [69] and calculating the corresponding shift in κ. To ensure that there are no further
significant differences between the MJ shapes of events reconstructed with one or two leptons,
we also calculate the shift in κ due to jet energy corrections, potential ISR pT and top quark
pT mismodeling, as well as the amount of non-tt background. Even though each of these can
alone have a significant effect on the MJ shape, the κ factor, as a double ratio, remains largely
unaffected (Table 2). Including these uncertainties in the likelihood fit produces a negligible
contribution to the total uncertainty.

7 Results and interpretation
Figure 8 shows the two-dimensional distribution of the data in the mT-MJ plane after the base-
line selection, but with the additional requirement Nb ≥ 2. The baseline requirements include
Emiss

T > 200 GeV and Njets ≥ 6, but no further event selection is applied. For comparison, the
plot also shows the expected total SM background based on simulation, as well as a particular
sample of the expected signal distribution. The overall distribution of events in data is consis-
tent with the background expectation, where the majority of events are concentrated at low mT
and MJ . In R4, the nominal signal region, we observe only two events in data, while, as shown
in Table 3, the predicted SM background is about 5 events. The T1tttt(1500,100) (NC) model
would be expected to contribute 5 additional events to R4.

The validity of the central assumption of the background estimation method can be checked in
the nearly signal-free Nb = 1 region by comparing the MJ shapes observed in the high- and
low-mT regions in data. Figure 9 (left) shows the MJ shapes in the Nb = 1 sample, integrating
over the Njets and Emiss

T bins. The low mT data have been normalized to the overall yields in
the corresponding high-mT data. The shapes of the MJ distributions for the high- and low-mT
regions are consistent. Figure 9 (right) shows that the corresponding distributions in the Nb ≥ 2
sample are also consistent, as expected in the absence of signal.

Table 3 summarizes the observed event yields, the fitted backgrounds, and the expected signal
yields for the two T1tttt benchmark model points. Two background estimates are given: the
predictive fit (PF), which uses only the yields in regions R1, R2, and R3, and the global fit (GF),
which also incorporates region R4, as described in Section 6. In both versions of the fit, the
signal strength r is fixed to zero, giving results that are model independent. (When setting
limits on individual models, we allow r to float, as discussed below.) The rows labeled R4 give
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Table 3: Observed and predicted event yields for the signal regions (R4) and background re-
gions (R1–R3) in data (2.3 fb−1). Expected yields for the two SUSY T1tttt benchmark scenarios
are also given. The results from two types of fits are reported: the predictive fit (PF) and the
version of the global fit (GF) performed under the assumption of the null hypothesis (r = 0).
The predictive fit uses the observed yields in regions R1, R2, and R3 only and is effectively just
a propagation of uncertainties. The global fit uses all four regions. The values of κ obtained
from the simulation fit are also listed. The first uncertainty in κ is statistical, while the second
corresponds to the total systematic uncertainty. The benchmark signal models, T1tttt(NC) and
T1tttt(C), are described in Section 3.

Region: bin κ T1tttt(NC) T1tttt(C) Fitted µbkg (PF) Fitted µbkg (GF) Obs.

200 < Emiss
T ≤ 400 GeV

R1: all Njets, Nb — 0.1 3.2 336.0± 18.3 335.3± 18.2 336
R2: 6 ≤ Njets ≤ 8, Nb = 1 — 0.1 0.2 47.1± 6.9 49.5± 6.9 47
R2: Njets ≥ 9, Nb = 1 — 0.1 0.3 7.0± 2.6 7.5± 2.7 7
R2: 6 ≤ Njets ≤ 8, Nb = 2 — 0.1 0.3 42.0± 6.5 41.1± 6.2 42
R2: Njets ≥ 9, Nb = 2 — 0.1 0.5 7.0± 2.6 6.6± 2.5 7
R2: 6 ≤ Njets ≤ 8, Nb ≥ 3 — 0.1 0.2 12.0± 3.5 11.1± 3.2 12
R2: Njets ≥ 9, Nb ≥ 3 — 0.2 0.6 1.0± 1.0 0.9± 0.9 1
R3: all Njets, Nb — 0.2 3.8 21.0± 4.6 21.6± 4.2 21
R4: 6 ≤ Njets ≤ 8, Nb = 1 1.12± 0.09± 0.43 0.2 0.2 3.3± 1.4 3.6± 1.0 6
R4: Njets ≥ 9, Nb = 1 0.91± 0.06± 0.81 0.2 0.4 0.4± 0.3 0.4± 0.2 1
R4: 6 ≤ Njets ≤ 8, Nb = 2 1.11± 0.06± 0.42 0.3 0.4 2.9± 1.2 2.9± 0.8 2
R4: Njets ≥ 9, Nb = 2 1.05± 0.11± 0.94 0.3 0.6 0.5± 0.3 0.4± 0.2 0
R4: 6 ≤ Njets ≤ 8, Nb ≥ 3 1.25± 0.11± 0.47 0.3 0.3 0.9± 0.4 0.9± 0.3 0
R4: Njets ≥ 9, Nb ≥ 3 1.05± 0.10± 0.93 0.3 0.7 0.1± 0.1 0.1± 0.1 0

Emiss
T > 400 GeV

R1: all Njets, Nb — 0.1 0.5 16.0± 4.0 17.1± 4.0 16
R2: 6 ≤ Njets ≤ 8, Nb = 1 — 0.2 0.1 8.0± 2.8 6.8± 2.5 8
R2: Njets ≥ 9, Nb = 1 — 0.1 0.2 1.0± 1.0 1.7± 1.2 1
R2: 6 ≤ Njets ≤ 8, Nb ≥ 2 — 0.5 0.3 3.0± 1.7 2.5± 1.4 3
R2: Njets ≥ 9, Nb ≥ 2 — 0.4 0.6 1.0± 1.0 0.9± 0.9 1
R3: all Njets, Nb — 0.4 0.9 4.0± 2.0 2.9± 1.4 4
R4: 6 ≤ Njets ≤ 8, Nb = 1 1.09± 0.16± 0.42 0.7 0.2 2.2± 1.7 1.2± 0.7 0
R4: Njets ≥ 9, Nb = 1 0.98± 0.16± 0.87 0.4 0.3 0.2± 0.3 0.3± 0.2 1
R4: 6 ≤ Njets ≤ 8, Nb ≥ 2 1.29± 0.22± 0.50 1.9 0.5 1.0± 0.8 0.5± 0.4 0
R4: Njets ≥ 9, Nb ≥ 2 0.90± 0.14± 0.80 1.6 1.0 0.2± 0.3 0.1± 0.1 0

the results for each of the ten signal regions, as well as the corresponding κ factors.

In the absence of signal, the predictive fit and the version of the global fit performed under the
null hypothesis, r = 0, should be consistent with each other. However, because the global fit
incorporates more information, specifically the yields in R4, this fit has a smaller uncertainty.
The regions with Nb = 1 have small expected contributions from signal. Summing over all
four such signal regions (R4), the number of estimated background events from the PF and
GF are 6.1 ± 2.2 and 5.5 ± 1.3, respectively, compared with 8 events observed in data. The
consistency between the two predictions and between the predicted and observed yields in
the R4 regions with Nb = 1, where the signal contribution is expected to be small, serves as a
further check on the background estimation method. Summing the yields over the six signal
bins with Nb ≥ 2, the number of estimated background events from PF and GF is 5.6± 1.6
and 4.9± 1.0, respectively. In data, we observe 2 events, lower than, but consistent with the
background-only hypothesis.
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Given the absence of any significant excess, the results are interpreted first as exclusion limits
on the production cross section for T1tttt model points as a function of mg̃ and mχ̃0

1
. Table 4

shows the ranges for the systematic uncertainties associated with predictions for the expected
signal yields, including those on the signal efficiency. The largest uncertainties arise from the
jet energy corrections and from the modeling of ISR. These uncertainties are generally in the
range 10–20% but can increase to ∼30% as the mass splitting between the gluino and LSP
decreases [76]. The uncertainty associated with the renormalization and factorization scales
is determined by varying the scales independently up and down by a factor of two; these
are applied only as an uncertainty in the signal shape, i.e., the cross section is held constant.
The uncertainty associated with the b tagging efficiency is in the range 1–15%. Uncertainties
due to pileup, luminosity [77], lepton selection, and trigger efficiency are found to be ≤ 5%.
Uncertainties for each particular source are treated as fully correlated across bins.

A 95% confidence level (CL) upper limit on the production cross section is estimated using the
modified frequentist CLS method [78–80], with a one-sided profile likelihood ratio test statistic.
For this test, we perform the global fit under the background-only and background-plus-signal
(r floating) hypotheses. The statistical uncertainties from data counts in the control regions are
modeled by the Poisson terms in Eq. (9). All systematic uncertainties are multiplicative and are
treated as log-normal distributions. Exclusion limits are also estimated for ±1σ variations on
the production cross section based on the NLO+NLL calculation [38].

Figure 10 shows the corresponding excluded region at a 95% CL for the T1tttt model in the mg̃ −
mχ̃0

1
plane. At low χ̃0

1 mass we exclude gluinos with masses of up to 1600 GeV. The highest limit
on the χ̃0

1 mass is 800 GeV, attained for mg̃ of approximately 1300 GeV. The observed limits are
within the 1σ uncertainty in the expected limits. The central value is slightly higher because
the observed event yield is less than the SM background prediction, as shown in Table 3.

In the context of natural SUSY models, it is important to extend the interpretation to scenarios
in which the top squark is lighter than the gluino. Rather than considering a large set of models
with independently varying top squark masses, we consider the extreme case in which the top
squark has approximately the smallest mass consistent with two-body decay, mt̃1

≈ mt + mχ̃0
1
,

for a range of gluino and neutralino masses. The decay kinematics for such extreme, com-
pressed mass spectrum models correspond to the lowest signal efficiency for given values of
mg̃ and mχ̃0

1
, because the top quark and the χ̃0

1 are produced at rest in the top squark frame.
As a consequence, the excluded signal cross section for fixed values of mg̃ and mχ̃0

1
and with

mg̃ > mt̃1
≥ mt + mχ̃0

1
is minimized around this extreme model point. For physical consistency,

the signal model used in this study, both in the fit procedure and in the theoretical cross section
used to obtain mass limits, includes not only gluino-pair production, but also direct t̃ 1̃t1 pro-
duction. However, the effect of the direct top squark contribution on the results is small, . 2%
for mχ̃0

1
> 400 GeV and up to 20% for low values of mχ̃0

1
.

Figure 11 shows the excluded region in the mg̃ -mχ̃0
1

plane for this combined model with both
gluino-mediated top squark production and direct top squark pair production. The top squark
mass is assumed to be 175 GeV above that of the neutralino. For most of the excluded region,
the boundary is close to that obtained for the T1tttt model, showing that there is only a weak
sensitivity to the value of the top squark mass. For mχ̃0

1
> 150 GeV, the excluded value of mg̃

is typically within 60 GeV of that excluded for T1tttt. Models that have low values of mχ̃0
1

show
a reduced sensitivity because the neutralino carries very little momentum, reducing the value
of mT. In this kinematic region, the sensitivity to the signal is dominated by the events that
have at least two leptonic W boson decays, which produce additional Emiss

T , as well as a tail in
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Table 4: Typical values of the signal-related systematic uncertainties. Uncertainties due to a
particular source are treated as fully correlated between bins, while uncertainties due to differ-
ent sources are treated as uncorrelated.

Source Fractional uncertainty [%]
Lepton efficiency 1–5
Trigger efficiency 1
b tagging efficiency 1–15
Jet energy corrections 1–30
Renormalization and factorization scales 1–5
Initial state radiation 1–35
Pileup 5
Integrated luminosity 3
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Figure 10: Interpretation of results in the T1tttt model. The colored regions show the upper
limits (95% CL) on the production cross section for pp → g̃g̃, g̃ → ttχ̃0

1 in the mg̃ -mχ̃0
1

plane.
The curves show the expected and observed limits on the corresponding SUSY particle masses
obtained by comparing the excluded cross section with theoretical cross sections.

the mT distribution. Although such dilepton events are nominally excluded in the analysis, a
significant number of these signal events escape the dilepton veto. These events include both
W decays to τ leptons that decay hadronically, and W decays to electrons or muons that are
below kinematic thresholds or are outside of the detector acceptance.
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Figure 11: Excluded region (95% CL), shown in blue, in the mg̃ -mχ̃0
1

plane for a model com-
bining T5tttt, gluino pair production, followed by gluino decay to an on-shell top squark, to-
gether with a model for direct top squark pair production. The top squarks decay via the
two-body process t̃ → tχ̃0

1. The neutralino and top squark masses are related by the constraint
mt̃1

= mχ̃0
1
+ 175 GeV. For comparison, the excluded region (95% CL) from Fig. 10 for the T1tttt

model, which has three-body gluino decay, is shown in red. The small difference between the
two boundary curves shows that the limits for the scenarios with two-body gluino decay have
only a weak dependence on the top squark mass.
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8 Summary
Using a sample of proton-proton collisions at

√
s = 13 GeV with an integrated luminosity

of 2.3 fb−1, a search for supersymmetry is performed in the final state with a single lepton,
b-tagged jets, and large missing transverse momentum. The search focuses on final states re-
sulting from the pair production of gluinos, which subsequently decay via g̃ → ttχ̃0

1, leading
to high jet multiplicities.

A key feature of the analysis is the use of the variable MJ , the sum of the masses of large-R
jets, which are formed by clustering anti-kT R = 0.4 jets and leptons. Used in conjunction with
the variable mT, the transverse mass of the system consisting of the lepton and the missing
transverse momentum vector, MJ provides a powerful background estimation method that is
well suited to this high jet multiplicity search.

After the baseline selection is applied, signal (R4) and control regions (R1, R2, and R3) are de-
fined in the MJ-mT plane, which are further divided into bins of Emiss

T , Njets, and Nb to provide
additional sensitivity. In regions R3 and R4, the requirement mT > 140 GeV provides strong
suppression of the single-lepton tt background, so that dilepton tt events dominate over all
other background sources. For these dilepton events to enter a signal region, however, they
must contain a substantial amount of initial-state radiation (ISR). For this extreme range of
ISR jet momentum and multiplicity, the single-lepton and dilepton tt events have very similar
kinematic properties. The variables MJ and mT are nearly uncorrelated, even though differ-
ent processes dominate the low- and high-mT regions. As a consequence, the low-mT regions
(R1 and R2) can be used to measure the background shape for the MJ distribution at high mT.
A correction factor, near unity, is taken from simulation and is used to account for a possible
correlation between MJ and mT.

The observed event yields in the signal regions are consistent with the predictions for the SM
background contributions, and exclusion limits are set on the gluino pair production cross
sections in the mg̃ -mχ̃0

1
plane, as described by the simplified models T1tttt and T5tttt, where the

latter is augmented with a model of direct top squark pair production for consistency. In the
T1tttt model, gluinos decay via the three-body process g̃ → ttχ̃0

1, which proceeds via a virtual
top squark in the intermediate state. Under the assumption of a 100% branching fraction to
this final state, the cross section limit for each model point is compared with the theoretical
cross section to determine the excluded particle masses. Gluinos with a mass below 1600 GeV
are excluded at a 95% CL for scenarios with low χ̃0

1 mass, and neutralinos with a mass below
800 GeV are excluded for a gluino mass of about 1300 GeV. In the T5tttt model, the top squark
is lighter than the gluino, which therefore decays via a two-body process. The boundary of the
excluded region in the mg̃ -mχ̃0

1
plane for T5tttt is found to be only weakly sensitive to the top

squark mass. These results significantly extend the sensitivity of single-lepton searches based
on data at

√
s = 8 GeV.
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Université Libre de Bruxelles, Bruxelles, Belgium
H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart,
R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk,
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J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén,
P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland



31

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri,
S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher,
E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon,
C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, I.N. Naranjo,
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L. Baronea ,b, F. Cavallaria, M. Cipriania ,b, G. D’imperioa,b,15, D. Del Rea ,b ,15, M. Diemoza,
S. Gellia ,b, C. Jordaa, E. Longoa ,b, F. Margarolia,b, P. Meridiania, G. Organtinia,b, R. Paramattia,
F. Preiatoa,b, S. Rahatloua ,b, C. Rovellia, F. Santanastasioa ,b
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